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Na+/K+ pump is a fundamental metabolic mechanism in cell 
membrane which controls cell functional activity. It generates Na+ 
gradient on cell membrane and serves as an energy source for a number 
of secondary ion transporters in membrane, such as Na+/Ca2+ and 
Na+/H+ exchangers, Na+/sugars, amino acids and different osmolytes 
[1]. It is known that Na+/K+ pump, with the function of controlling 
intracellular ionic homeostasis, works in electrogenic regime, generates 
the metabolic component of membrane potential [2-4] and has a 
crucial role in cell volume regulation [5,6]. The activation of Na+/K+ 

pump leads to generation of water efflux from the cells by a) push out of 
3Na+ and uptake of 2K+ and b) release of H2O in cytoplasm (42 H2O for 
one molecule glucose oxidation) as a result of activation of intracellular 
oxidative phosphorylation [7]. Such a Na+/K+ pump-induced water 
efflux has a great physiological meaning as it balances the osmotic 
water uptake [5] by cell and inactivates Na+ and Ca2+ inward currents 
through the membrane [8,9]. 

We have previously shown that Na+/K+ pump-dependent regulation 
of cell volume is a powerful metabolic mechanism through which 
both the auto-regulation of Na+/K+-pump [10] and the regulation of 
membrane chemosensitivity [11] and excitability [8] are realized by 
changing surface-dependent number of functionally active proteins in 
membrane.

It is known that the dysfunction of Na+/K+ pump, which is 
accompanied by the increase of intracellular Ca2+ concentration 

([Ca2+]i), is a common consequence of any cell pathology (including 
aging). Traditionally, the increase of [Ca2+]i, which is accompanied 
by Na+/K+ pump inactivation, is considered as a result of intracellular 
Na+ concentration ([Na+]i) increase which stimulates Ca2+ uptake 
through Na+/Ca2+ exchange in reverse mode (R Na+/Ca2+ exchange) 
[12]. However, our previous study has shown that cGMP and cAMP 
modulate Na+/Ca2+ exchange activity without significantly changing 
[Na+]i [13-15]. The factors, which elevate intracellular cGMP, lead to 
activation of Na+/Ca2+ exchange in forward mode (F Na+/Ca2+ exchange) 
[15-18], while the factors, having elevation effect on cAMP content, 
activate R Na+/Ca2+ exchange (Na+ efflux and Ca2+ influx) [19-21]. From 
these data it can be concluded that cGMP/cAMP-dependent Na+/Ca2+ 
exchange, which has a crucial role in [Ca2+]i control, is more sensitive to 
environmental factors than Na+/K+ pump activity. Considering the fact 
that [Ca2+]i is a strong inhibitor for Na+/K+-ATPase [22], it is suggested 
that [Ca2+]i increase precedes the dysfunction of Na+/K+ pump in cell 
pathology. 

The data presented in Figure 1 indicates that in normal physiological 
solution mechanical vibration and pulsing magnetic field, with the 
activation effect on F Na+/Ca2+ exchange, inhibit Ca2+ uptake; while in 
K+-free physiological solution, when pump is depressed and brings to 

elevation of intracellular cAMP, the same factors activate R Na+/Ca2+ 
exchange [23]. 

From these data, it can be concluded that the factors, which activate 
cGMP-dependent F Na+/Ca2+ exchange in healthy organism, can also 
stimulate cAMP-dependent R Na+/Ca2+ exchange in cell pathology, 
when pump is depressed.

At present, it is established that Na+/K+-ATPase in somatic cells 
of mammals have three catalytic isoforms with different affinities to 
ouabain (specific inhibitor for Na+/K+-ATPase) and various functions: 
low (α1 isoform), middle (α2 isoform) and high (α3 isoform) affinities 
[24]. Among these receptors, α3 isoform is not directly involved in Na+/
K+ pumping process and has only signaling function [25].

Our earlier study performed on Helix snail neurons has shown that, 
similar to mammalian cells, in these neuronal membranes there are 
three families of ouabain receptors with different affinities. The curve 
of dose-dependent 3[H]-ouabain binding with membrane consists of 
three components - two saturated (10-10-10-9M and10-8-10-7M) and one 
linear (10-7-10-3M). Among these three families of receptors, only the 
receptors with dose-dependent linear character have Na+/K+ pump 
function. As can be seen in Figure 2, ouabain at >10-7M concentrations 
has inactivation effect on Na+ efflux (Na+/K+ pump), while <10-7M 
ouabain concentrations have activation effects on 22Na+ efflux from the 
cells (Figure 2A) [10].

This activation effect on 22Na+ efflux takes places without 
significantly changing Na+/86Rb+ pump activity (where K+ was replaced 
by 86Rb+) (Figure 2B). Na+/K+ pump-independent 22Na+ efflux is 
activated by the increase of extracellular Ca2+ concentration, which is 
due to Na+ exchange with 45Ca2+ uptake (Figure 3) [26]. It is interesting 
to note that in pioneer work of Prof. Baker and his co-authors on 
fundamental study of Na+/Ca2+ exchange, which was performed on 
internally perfused squid axon, ouabain-sensitive (Na+/K+ pump) 
and ouabain-insensitive (Na+/Ca2+ exchange) components of  22Na+ 

efflux were identified [12]. Thus, the absence of low ouabain-induced 
activation of Na+/Ca2+ exchange in internally perfused axon (which is 
present in intact neurons) indicates the involvement of a cytoplasmic 
mechanism(s) in ouabain-induced activation of R Na+/Ca2+ exchange. 

The study of dose-dependent 3[H]-ouabain binding with neuronal 
membrane in isotonic, hypertonic and hypotonic solutions has 
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Figure 1. The effects of MV on 45Ca2+ uptake by neuronal ganglia in normal (A) and K+-free PS (B) [23].

Figure 2. A. The rate constant as a function of the concentration of ouabain in the medium. The dashed line indicates the rate constant in normal Ringer’s solution. The values of the rate 
constant are equivalent to the values at 5 min. The limits of ±SE do not exceed the diameter of the symbols [10]. B. 86Rubidium uptake as a function of ouabain concentration. Results 
shown are the means of ±SEM of ten experiments, each period from study of ten pooled ganglia. The open circle at the left represents 86Rb uptake in the absence of ouabain, and this level 
is indicated in the dashed line [14].

Figure 3. A. The rate constant of 22Na+ efflux as a function of ouabain concentration in K+-free physiological solution containing 2 (1), 7 (2) and 20 (3) mM Ca2+. B. 45Ca2+ uptake in K+-free 
medium containing 2, 7 and 20 mM Ca2+ [26].
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shown, that compared with the number of ouabain receptors in cell 
membrane incubated in isotonic solution, both the numbers of pump 
units (α1 isoforms) and ouabain receptors responsible for activation 
of R Na+/Ca2+ exchange (α2/α3 isoforms) are higher in hypotonic 
and lower in hypertonic solutions (Figure 4) [10]. It is notable that 
the osmosensitivity of high affinity ouabain binding sides is more 
pronounced that of high affinity ones (>10-7M). 

It is known that the differences of electrochemical gradients of 
Na+ and Ca2+ serve as energy sources for Na+/Ca2+ exchange [12]. 
Traditionally, both low and high ouabain concentrations-induced 
stimulations of Na+/Ca2+ exchange are explained by Na+/K+ pump 
inhibition leading to the increase of [Na+]i

 [24]. However, as the above 
presented data indicate, low concentrations of ouabain stimulate Na+/
Ca2+ exchange without notable changes in Na+/K+ pump activity [14]. 
As the activities of Na+/Ca2+ exchange and Na+/K+ pump are realized 
by different proteins, it is suggested that the close-talking correlation 
between them can be realized not only by the changes of [Na+]i but 
also by the changes of [Ca2+]i. It is obvious that [Ca2+]i can be decreased 
through [Ca2+]i sorption by intracellular structure and [Ca2+]i dilution 
by increasing intracellular water contents.

As it is noted above, low ouabain-induced activation of R Na+/Ca2+ 
exchange is accompanied by the increase of intracellular cAMP content 
in neurons [14]. It has also been shown that the activation of R Na+/
Ca2+ exchange, which is accompanied by the increase of intracellular 
cAMP, takes place upon the effect of extremely low concentrations of 
biologically active substances (such as synaptic transmitters, H2O2) 
[27,28] and physical factors (such as background radiation, microwave 
with non-thermal intensity) [16,23] which are unable to activate ionic 
channels in membrane [16]. There is a great number of literature data 
showing that nM ouabain elevates intracellular cAMP content in 
different tissues, including dog renal cortex, goldfish intestinal mucosa, 
mouse pancreatic islets, murine epithelioid and fibroblastic cell lines, 
rat brain, rat renal collecting tubule cells in culture and astrocytes 

[29]. It has been shown that intracellular cAMP has activation effect 
on Ca2+ pump localized in endoplasmatic reticulum (ER) membrane 
transporting Ca2+ from cytoplasm into ER [30]. It is known that Na+/
Ca2+ exchange functions in stoichometry of 3Na+:1Ca2+ [12]. Therefore, 
it is predicted that the activation of R Na+/Ca2+ exchange should bring 
to cell dehydration. However, by our previous study performed on 
brain and heart muscle tissues of young (healthy) rats it has been 
shown that nM ouabain-induced elevation of intracellular cAMP 
leads to activation of R Na+/Ca2+ exchange, which is accompanied 
by cell hydration. It has also been shown that both the rate of R Na+/
Ca2+ exchange and cell hydration have a metabolic nature and age-
dependent weakening, reverse character [19,31].

Thus, based on the aforementioned data, it can be suggested that in 
healthy animals there are minimum two mechanisms through which 
cAMP activates R Na+/Ca2+ exchange as a result [Ca2+]i decrease. They 
are a) the activation of Ca2+ pump in ER membrane and b) increase 
of intracellular water content leading to dilution of [Ca2+]i. However, 
in old and unhealthy animals Na+/K+ pump dysfunction increases 
[Na+]i, which in its turn stimulates R Na+/Ca2+ exchange bringing to 
the increase of [Ca2+]i. As the latter has multi-poisoning effect on cell 
metabolism, the activation of R Na+/Ca2+ exchange is accompanied by 
cell dehydration. Therefore, it is suggested that R Na+/Ca2+ exchange-
induced cell dehydration can be considered as a primary mechanism 
for cell pathology. 
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